Knowledge that will change your world ## Introduction to metabolomics research Stephen Barnes, PhD University of Alabama at Birmingham T argeted sbarnes@uab.edu M etabolomics & P roteomics L aboratory #### What is "Metabolomics"? - Metabolomics is like other types of -omics analysis (microarray, RNA-Seq, proteomics, etc.) - Offers a "comprehensive" view of all detectable chemicals (not just metabolites) - Can be applied to body fluids - Plasma/sera, urine, saliva, tears, fecal water, etc. - Also to tissues - Liver, lung, heart, kidney, brain, eyes, etc. - And to single cells - Human, rodent, yeast, bacteria, etc. #### What is the metabolome? - Not just the intermediates in the described metabolic pathways (glycolysis, Krebs cycle, etc.) in biochemistry textbooks - It's all the chemicals that are in tissues and biofluids of us, in experimental animals, in cell lines and even in foods we eat. - Also, the air we breathe/smell #### Where does the metabolome come from? It starts with what fixes CO₂ and N₂ Trees convert CO₂ to organic compounds Field of soybeans – they fix N_2 because of nitrogenfixing bacteria in their root nodules #### Plants have more genes than humans - Why? Plants can't run away!! - · Apart from a view, they can't anything - Instead, they have to practice chemical warfare to prevent attack by aphids and microorganisms - · Many plants are poisonous to us - Understanding which plants were safe to eat, or were so if cooked, represented the rise of agriculture and civilization ### **Compounds in plants and fruits** - Carotenoids - Many vitamins - Polyphenols and anthocyanins - · Not made by human cells #### Other sources of body chemicals - The microbiomes - Humans are not single organisms - Instead, we are super-organisms - It makes novel compounds that are absorbed, enter the blood stream and tissues - Chemicals from the environment - industrial contaminants, therapeutics, supplements - Interactions between the xenobiotics and the human enzyme systems #### **Course goals** #### To understand - The vital roles of metabolites - The origins of metabolites - That metabolomics is high dimensional - The best method for extracting metabolites - How to select the analytical approach - Qualitative and statistical analysis of the data - How to identify the "interesting" metabolites - How to map to (or define) pathways - The value of stable isotopes #### Where did metabolomics came from? #### **Nuclear physics creates mass spectrometry** 1897 JJ Thomson discovers the electron (cathode rays) 1919 Aston using a mass spectrograph shows that Neon with a non-integer MW (20.2 Da) is composed of two isotopes, ²⁰Ne and ²²Ne http://www.asms.org/Publications/Historical/HistoryofMassSpectrometry/tabid/94/Default.aspx #### **Transition to biology** Ralf Schoenheimer **David Rittenberg** - While the politicians, tyrants, dictators and despots were salivating at the thought of developing nuclear weapons from unstable isotopes in the early part of the 20th Century, two scientists began the pursuit of the peaceful use of stable isotopes, initially deuterium (²H), and later carbon (¹³C) and nitrogen (¹⁵N), to study biochemical pathways - Understanding the pathways of metabolism was born #### **Metabolism to metabolomics** - Many metabolites measured with enzymes changes in NAD(P)H absorbance/fluorescence - Studies of glycolytic and the TCA cycle intermediates one at a time ## Origins of practical metabolomics Imperial College 1967-1970 Radio 2D-paper chromatography scanner with digitization of collected data The room had 10 of these scanners – data analyzed by a central computer (in 1968) Courtesy of K.R. Mansford, PhD #### **Radio-GC analysis** metabolomics in its infancy Radio gas-liquid chromatography with digitization of collected data Developed this for my PhD work (1967-1970) to study glucose metabolism in acellular slime moulds # How Nuclear Magnetic Resonance (NMR) became a player - Mid 60s introduction of Fourier transform analysis - Late 70s introduction of superconducting magnets - Early 80s pulse sequences #### Gas chromatography - Built on critical steps - 1908 Twsett introduces the concept of chromatographic separation (of plant pigments) - 1941 Martin and Consden conceptualize the rules of partition chromatography (get the 1953 Nobel Prize in Chemistry) - 1950 James and Martin describe gas chromatography of volatile fatty acids - · A boon to the oil industry - 1975 (Finally) open tubular, capillary gas chromatography becomes commercially available AT (Tony) James #### **Progress in LC-MS** - Commercial HPLC appeared in the early 1970s to separate thermally stable and unstable molecules - The challenge remained to find a way to get the unstable compounds into the gas phase - Applied to macromolecules (peptides, proteins) as well as metabolites - Thermospray had some initial success - Electrospray ionization and chemical ionization radically changed analysis, allowing compounds to go into the gas phase at <u>atmospheric pressure</u> and <u>room temperature</u> #### **LC-MS** - Suddenly, there were what appeared to be no limits (or very few) to what could be analyzed - Unheard of, <u>robust</u> mass spectrometers came into play - "A reliable mass spectrometer" was considered in 1990 to be an oxymoron ### **Changing times in Computing** - 1950 The Cambridge colleagues of Watson and Crick calculated the structure of DNA by putting data onto punched cards and taking them by train to London for analysis – and to the fog – the "cloud" in - 1964 Seymour Cray develops the CDC 6600 (1 Mflops) - 1967 I used paper tape to collect data from a radio gas chromatograph and then submitted them via a terminal reader to the CDC 6600 at the University of London ## **Today in Computing** #### On my desk in 2016 - The Apple MacBook Air with 2 quad core Intel i7 processors - Operates at 2.0 GHz - Memory of 8 GB - · Access 1.333 GHz - 512 GB Flash memory storage - 10 Gbs Thunderbolt I/O - Also cost ~\$2,000 #### **IBM Blue-Gene** - Parallel processing with 2,048 700 MHz computers operating at 4.733 Tflops - Replaced by Cheaha, in its current configuration it has 48 compute nodes with two 2.66GHz 6-core Intel CPUs per node (576 cores total) - · It operates at 6.125 Tflops #### MRC-NIHR National Phenome Centre 600 MHz NMR instruments in surgical suite Mass spectrometers (10 Q-TOFs) each dedicated to one assay format Iknife - revolutionizing surgery This is Next-GEN precise medicine ## **UAB** capabilities in metabolomics SCIEX 5600 TripleTOF with Eksigent nanoLC TMPL mass spec lab MCLM 459/427 Stephen Barnes, Director 934-7117/3462 SCIEX 6500 Qtrap with SelexION Central Alabama NMR facility Chemistry Bdg N. Rama Krishna, Director 934-5695 #### **Great challenges in metabolomics** - The extent of the metabolome - From gaseous hydrogen to earwax - Having complete databases - METLIN has 60,000+ metabolite records, but your problem always creates a need to have more - Improvement in the size of a MSMS database - Storing and processing TBs of data - Standards and standard operating procedures - Being able to do the analyses in real time #### **NIH Common Fund Metabolomics Program** - Metabolomics Workbench: http://www.metabolomicsworkbench.org/ - Regional Comprehensive Metabolomics Research Centers - University of Michigan: http://mrc2.umich.edu/index.php - UC Davis Metabolomics Center: http://metabolomics.ucdavis.edu/ - RTI International: http://www.rti.org/page.cfm?objectid=3BC41B11-068E-1405-9A6F79D91D8D69EC - SE Center for Integrated Metabolomics: http://secim.ufl.edu/ - Resource Center for Stable Isotope Metabolomics: http://bioinformatics.cesb.uky.edu/bin/view/RCSIRM/ - Mayo Clinic Metabolomics Resource: http://www.mayo.edu/research/core-resources/metabolomics-resource-core/overview